Interplay between magnetism and conductivity in TPP[Fe(Pc)(CN)$_2$)$_2$

Interplay between magnetism and conductivity has brought about various intriguing phenomena especially in strongly correlated materials. The large magnetoresistance (MR) effect arising from such interplay, for instance, is a central issue in solid-state physics. A magnetic organic conductor, TPP[Fe(Pc)(CN)$_2$], has one-dimensional conducting chains of stacked dicyano(phthalocyaninato) iron Fe(Pc)(CN)$_2$ molecules. The Fe(Pc)(CN)$_2$ molecule has both π electron on the Pc ligand and the local 3d magnetic moment at the central Fe$^{3+}$ ion, where they are strongly coupled with each other. The conductance at constant bias voltage (Fig. 1) shows a drastic increase near $B=15T$ at low temperatures, which is associated with the steep change in the magnetic torque [Fig. 2(a)]. The results clearly demonstrate that the conducting behavior of the π electrons is strongly affected by the magnetic state of the Fe 3d moments. The detailed analyses show that the magnetic potential formed by the 3d moments is significantly reduced at about 15 T [Fig. 2(b,c)].

For details, see an article, “Interplay between magnetism and conductivity in the one-dimensional organic conductor TPP[Fe(Pc)(CN)$_2$]$_2$” by M. Kimata (A03), Y. Takahide (A03), A. Harada, H. Satsukawa, K. Hazama, T. Terashima, and S. Uji(A03), T. Naito (A02) and T. Inabe(A02), Phys. Rev. B 80, 085110 (2009)